Background

Let Δ be a (d-1)-dimensional simplicial complex. We have the following polynomials:

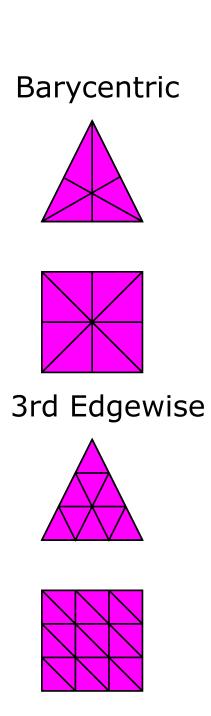
f-poynomial: $f(\Delta; x) = f_{-1} + f_0 x + \dots + f_{d-1} x^d$ where $f_{-1} = 1$ and f_i is the number of *i*-dimensional faces of Δ .

h-polynomial: $h(\Delta; x) = (1 - x)^d f\left(\frac{x}{1 - x}\right)$

A well-studied question is the classification of hpolynomials of simplicial complexes. For example, we may ask whether a h-polynomial is

• unimodal: $h_0 \leq h_1 \leq \cdots \leq h_k \geq \cdots \geq h_d$ • real-rooted: stronger than unimodality

Theorem (Brenti, Welker 2008) [2] If $h(\Delta; x)$ has positive coefficients, the barycentric subdivision of Δ has a real-rooted *h*-polynomial.



Question: What other subdivisions of polytopal complexes have a real-rooted h-polynomial? Some places to start:

- **1** barycentric subdivision of boundary complexes of cubical polytopes (Brenti, Welker)
- **edgewise subdivision** of boundary complexes of cubical and simplicial polytopes (Mohammadi, Welker)

Sketch of technique

- Use the idea of shelling to decompose our subdivision into disjoint pieces.
- **2** Find all possible h- polynomials of these bite-sized pieces.
- **3** Use the idea of interlacing polynomials to show that the h – polynomial of the whole subdivision is real-rooted.

Subdisions of shellable complexes

Max Hlavacek* (UC Berkeley) and Liam Solus (KTH Institute of Technology)

Shelling and relative complexes

Shelling— A linear ordering (F_1,\ldots,F_s) on the facets of a pure polytopal complex such that:

- **1** Boundary complex of F_1 is shellable.
- **2** The intersection of F_i with the prev. facets is nonempty and is the beginning segment of a shelling of the boundary complex of F_i .

Relative complex–C/D denotes a polytopal complex \mathcal{C} with a subcomplex D removed.

For subdivision \mathcal{C}' of a shellable complex \mathcal{C} , we use our shelling order to define:

 $\mathcal{R}_i = \mathcal{C}'|_{F_i} / \left(egin{smallmatrix} i-1 \ \cup \ k-1 \ \mathcal{C}'|_{F_k} \end{matrix}
ight)$

be rea \mathbf{p} \mathbf{T} p_2 of
A sta lat Sir Cu

 \mathbb{X}

Theorem 1: H., Solus 2020

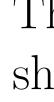
Let \mathcal{C} be a shellable polytopal complex with shelling (F_1, \ldots, F_s) and subdivision $\varphi : \mathcal{C}'$. If $(h(_{\sigma(i)}; x))_{i=1}^s$ is an interlacing sequence for some permutation $\sigma \in \mathfrak{S}_s$, then $h(\mathcal{C}'; x)$ is real-rooted.

Application to cubical complexes

- The *h*-polynomials of barycentric subdivisions of stable relative complexes of a d-cube form an interlacing sequence.
- Same for rth edgewise subdivisions.

Theorem 1: H., Solus 2020

The barycentric and rth edgewise subdivisions of cubical complexes admitting a stable shelling have real-rooted h-polynomials. This includes the examples to the right.



Interlacing polynomials

Interlacing polynomials: there is a zero of *p* etween each pair of zeroes of q and vice versa for eal-rooted polynomials p and q.

 $\prec \mathbf{q}$: p and q are interlacing and $p'q - q'p \ge 0$

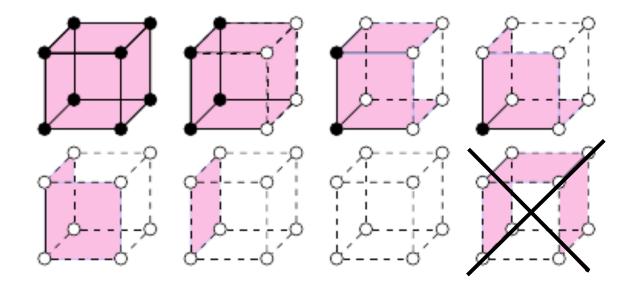
Theorem (Borcea, Brändén) Suppose $p_1 \prec$ $\prec \cdots \prec p_n$. Then any nonnegative combination $p_1 \dots p_n$ is real-rooted.

Stable shellings

shelling is **stable** if the relative complexes are table (satisfying a specific property related to face ttices).

mpicial complexes: all shellings are stable.

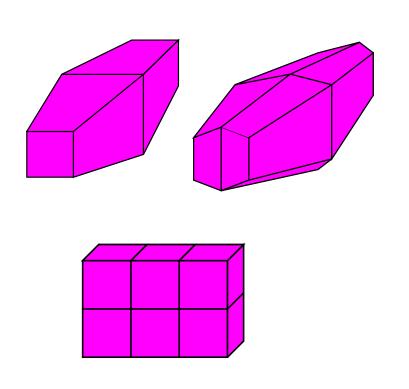
ubical complexes: relative complexes look like:



Families of cubical polytopes

The following cubical complexes have stable shellings.

• boundary complex of capped cubical polytopes • boundary complex of cuboids • piles of cubes



Since this project was released, Athanasiadis [1] answered Question 1 entirely, generalizing Theorem 2 using different techniques.

Some questions extending the techniques in this project:

[2] F. Brenti and V. Welker. "f-vectors of barycentric subdivisions". In: Math. Z. 259 (2008), рр. 849 -865.

Max Hlavacek was supported by a UC Chancellor's fellowship. Liam Solus was supported by an NSF Postdoctoral Fellowship, a Starting Grant from Vetenskapsradet, and WASP funded by the Knut and Alice Wallenberg Foundation.

Applications to simplicial polytopes

Using this general framework, we can also prove:

• The barycentric subdivision of a shellable simplicial complex has a real-rooted h-polynomial (already proven by Brenti and Welker in [2])

• For r > d, the rth edgewise subdivision of a shellable simplicial complex has a real-rooted h-polynomial.

Discussion and future work

• Are their other families of polytopes (not nec. cubical or simplicial) that admit stable shellings, and do real-rootedness results follow?

• Do all polytopes admit a **stable line shelling**?

References

[1] C. A. Athanasiadis. Face numbers of barycentric subdivisions of cubical complexes. 2020. arXiv: 2009.02272.

[3] M. Hlavacek and L. Solus. Subdivisions of shellable complexes. 2020. arXiv: 2003.07328.